Mathematics > Optimization and Control
[Submitted on 26 Dec 2018]
Title:Necessary Conditions for Stochastic Optimal Control Problems in Infinite Dimensions
View PDFAbstract:The purpose of this paper is to establish the first and second order necessary conditions for stochastic optimal controls in infinite dimensions. The control system is governed by a stochastic evolution equation, in which both drift and diffusion terms may contain the control variable and the set of controls is allowed to be nonconvex. Only one adjoint equation is introduced to derive the first order optimality necessary condition either by means of the classical variational analysis approach or under some assumption which is quite natural in the deterministic setting to guarantee the existence of optimal controls. More importantly, in order to avoid the essential difficulty with the well-posedness of higher order adjoint equations, using again the classical variational analysis approach, only the first and the second order adjoint equations are needed to formulate the second order necessary optimality condition, in which the solutions to the second order adjoint equation are understood in the sense of relaxed transposition.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.