Mathematics > K-Theory and Homology
[Submitted on 27 Dec 2018]
Title:Tannaka duality for enhanced triangulated categories I: reconstruction
View PDFAbstract:We develop Tannaka duality theory for dg categories. To any dg functor from a dg category $\mathcal{A}$ to finite-dimensional complexes, we associate a dg coalgebra $C$ via a Hochschild homology construction. When the dg functor is faithful, this gives a quasi-equivalence between the derived dg categories of $\mathcal{A}$-modules and of $C$-comodules. When $\mathcal{A}$ is Morita fibrant (i.e. an idempotent-complete pre-triangulated category), it is thus quasi-equivalent to the derived dg category of compact $C$-comodules. We give several applications for motivic Galois groups.
Current browse context:
math.KT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.