Condensed Matter > Statistical Mechanics
[Submitted on 29 Mar 2019]
Title:Equivalence of ensembles, condensation and glassy dynamics in the Bose-Hubbard Hamiltonian
View PDFAbstract:We study mathematically the equilibrium properties of the Bose-Hubbard Hamiltonian in the limit of a vanishing hopping amplitude. This system conserves the energy and the number of particles. We establish the equivalence between the microcanonical and the grand-canonical ensembles for all allowed values of the density of particles $\rho$ and density of energy $\varepsilon$. Moreover, given $\rho$, we show that the system undergoes a transition as $\varepsilon$ increases, from a usual positive temperature state to the infinite temperature state where a macroscopic excess of energy condensates on a single site. Analogous results have been obtained by S. Chatterjee (2017) for a closely related model. We introduce here a different method to tackle this problem, hoping that it reflects more directly the basic understanding stemming from statistical mechanics. We discuss also how, and in which sense, the condensation of energy leads to a glassy dynamics.
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.