Computer Science > Systems and Control
[Submitted on 25 Mar 2019 (v1), last revised 20 Jun 2019 (this version, v2)]
Title:Dynamic mode decomposition for multiscale nonlinear physics
View PDFAbstract:We present a data-driven method for separating complex, multiscale systems into their constituent time-scale components using a recursive implementation of dynamic mode decomposition (DMD). Local linear models are built from windowed subsets of the data, and dominant time scales are discovered using spectral clustering on their eigenvalues. This approach produces time series data for each identified component, which sum to a faithful reconstruction of the input signal. It differs from most other methods in the field of multiresolution analysis (MRA) in that it 1) accounts for spatial and temporal coherencies simultaneously, making it more robust to scale overlap between components, and 2) yields a closed-form expression for local dynamics at each scale, which can be used for short-term prediction of any or all components. Our technique is an extension of multi-resolution dynamic mode decomposition (mrDMD), generalized to treat a broader variety of multiscale systems and more faithfully reconstruct their isolated components. In this paper we present an overview of our algorithm and its results on two example physical systems, and briefly discuss some advantages and potential forecasting applications for the technique.
Submission history
From: Daniel Dylewsky [view email][v1] Mon, 25 Mar 2019 21:35:11 UTC (6,156 KB)
[v2] Thu, 20 Jun 2019 18:40:32 UTC (6,158 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.