Condensed Matter > Statistical Mechanics
[Submitted on 25 Jun 2019]
Title:Correlations and transport in exclusion processes with general finite memory
View PDFAbstract:We consider the correlations and the hydrodynamic description of random walkers with a general finite memory moving on a $d$ dimensional hypercubic lattice. We derive a drift-diffusion equation and identify a memory-dependent critical density. Above the critical density, the effective diffusion coefficient decreases with the particles' propensity to move forward and below the critical density it increases with their propensity to move forward. If the correlations are neglected the critical density is exactly $1/2$. We also derive a low-density approximation for the same time correlations between different sites. We perform simulations on a one-dimensional system with one-step memory and find good agreement between our analytical derivation and the numerical results. We also consider the previously unexplored special case of totally anti-persistent particles. Generally, the correlation length converges to a finite value. However in the special case of totally anti-persistent particles and density $1/2$, the correlation length diverges with time. Furthermore, connecting a system of totally anti-persistent particles to external particle reservoirs creates a new phenomenon: In almost all systems, regardless of the precise details of the microscopic dynamics, when a system is connected to a reservoir, the mean density of particle at the edge is the same as the reservoir following the zeroth law of thermodynamics. In a totally anti-persistent system, however, the density at the edge is always higher than in the reservoir. We find a qualitative description of this phenomenon which agrees reasonably well with the numerics.
Current browse context:
cond-mat.stat-mech
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.