Condensed Matter > Soft Condensed Matter
[Submitted on 9 Jul 2019 (v1), last revised 20 Nov 2019 (this version, v2)]
Title:The emergence of crack-like behavior of frictional rupture: Edge singularity and energy balance
View PDFAbstract:The failure of frictional interfaces -- the process of frictional rupture -- is widely assumed to feature crack-like properties, with far-reaching implications for various disciplines, ranging from engineering tribology to earthquake physics. An important condition for the emergence of a crack-like behavior is the existence of stress drops in frictional rupture, whose basic physical origin has been recently elucidated. Here we show that for generic and realistic frictional constitutive relations, and once the necessary conditions for the emergence of an effective crack-like behavior are met, frictional rupture dynamics are approximately described by a crack-like, fracture mechanics energy balance equation. This is achieved by independently calculating the intensity of the crack-like singularity along with its associated elastic energy flux into the rupture edge region, and the frictional dissipation in the edge region. We further show that while the fracture mechanics energy balance equation provides an approximate, yet quantitative, description of frictional rupture dynamics, interesting deviations from the ordinary crack-like framework -- associated with non-edge-localized dissipation -- exist. Together with the recent results about the emergence of stress drops in frictional rupture, this work offers a comprehensive and basic understanding of why, how and to what extent frictional rupture might be viewed as an ordinary fracture process. Various implications are discussed.
Submission history
From: Eran Bouchbinder [view email][v1] Tue, 9 Jul 2019 19:30:08 UTC (626 KB)
[v2] Wed, 20 Nov 2019 15:16:50 UTC (675 KB)
Current browse context:
cond-mat.soft
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.