High Energy Physics - Theory
[Submitted on 21 Aug 2019]
Title:Fractional Fermion Number and Hall Conductivity of Domain Walls
View PDFAbstract:In this letter the fractional fermion number of thick domain walls is computed. The analysis is achieved by developing the heat kernel expansion of the spectral eta functon of the Dirac Hamiltonian governing the fermionic fluctuations around the domain wall. A formula is derived showing that a non null fermion number is always accompanied by a Hall conductivity induced on the wall. In the limit of thin and impenetrable walls the chiral bag boundary conditions arise, and the Hall conductivity is computed for this case as well.
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.