Mathematics > Number Theory
[Submitted on 1 Jan 2020]
Title:On two problems about isogenies of elliptic curves over finite fields
View PDFAbstract:Isogenies occur throughout the theory of elliptic curves. Recently, the cryptographic protocols based on isogenies are considered as candidates of quantum-resistant cryptographic protocols. Given two elliptic curves $E_1, E_2$ defined over a finite field $k$ with the same trace, there is a nonconstant isogeny $\beta$ from $E_2$ to $E_1$ defined over $k$. This study gives out the index of $\rm{Hom}_{\it k}(\it E_{\rm 1},E_{\rm 2})\beta$ as a left ideal in $\rm{End}_{\it k}(\it E_{\rm 2})$ and figures out the correspondence between isogenies and kernel ideals. In addition, some results about the non-trivial minimal degree of isogenies between the two elliptic curves are also provided.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.