Mathematics > Combinatorics
[Submitted on 1 Jan 2020 (v1), last revised 16 Jan 2020 (this version, v2)]
Title:Non-Schur-positivity of chromatic symmetric functions
View PDFAbstract:We provide a formula for every Schur coefficient in the chromatic symmetric function of a graph in terms of special rim hook tabloids. This formula is useful in confirming the non-Schur positivity of the chromatic symmetric function of a graph, especially when Stanley's stable partition method does not work. As applications, we determine Schur positive fan graphs and Schur positive complete tripartite graphs. We show that any squid graph obtained by adding $n$ leaves to a common vertex on an $m$-vertex cycle is not Schur positive if $m\ne 2n-1$, and conjecture that neither are the squid graphs with $m=2n-1$.
Submission history
From: David Wang [view email][v1] Wed, 1 Jan 2020 10:13:06 UTC (19 KB)
[v2] Thu, 16 Jan 2020 17:38:33 UTC (18 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.