Quantum Physics
[Submitted on 23 Aug 2020 (v1), last revised 20 Nov 2024 (this version, v3)]
Title:Qualitative equivalence between incompatibility and Bell nonlocality
View PDF HTML (experimental)Abstract:Measurements in quantum theory can fail to be jointly measurable. Like entanglement, this incompatibility of measurements is necessary but not sufficient for violating Bell inequalities. The (in)compatibility relations among a set of measurements can be represented by a joint measurability structure, i.e., a hypergraph whose vertices denote measurements and hyperedges denote all and only compatible sets of measurements. Since incompatibility is necessary for a Bell violation, the joint measurability structure on each wing of a Bell experiment must necessarily be non-trivial, i.e., it must admit a subset of incompatible vertices. Here we show that for any non-trivial joint measurability structure with a finite set of vertices, there exists a quantum realization with a set of measurements that enables a Bell violation, i.e., given that Alice has access to this incompatible set of measurements, there exists a set of measurements for Bob and an entangled state shared between them such that they can jointly violate a Bell inequality. Hence, a non-trivial joint measurability structure is not only necessary for a Bell violation, but also sufficient.
Submission history
From: Ravi Kunjwal [view email][v1] Sun, 23 Aug 2020 20:02:01 UTC (255 KB)
[v2] Mon, 4 Sep 2023 07:53:16 UTC (438 KB)
[v3] Wed, 20 Nov 2024 09:30:03 UTC (485 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.