Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 20 Jan 2021 (v1), last revised 10 Dec 2021 (this version, v3)]
Title:Variational manifold learning from incomplete data: application to multislice dynamic MRI
View PDFAbstract:Current deep learning-based manifold learning algorithms such as the variational autoencoder (VAE) require fully sampled data to learn the probability density of real-world datasets. Once learned, the density can be used for a variety of tasks, including data imputation. However, fully sampled data is often unavailable in a variety of problems, including the recovery of dynamic and high-resolution MRI data considered in this work. To overcome this problem, we introduce a novel variational approach to learn a manifold from undersampled data. The VAE uses a decoder fed by latent vectors, drawn from a conditional density estimated from the fully sampled images using an encoder. Since fully sampled images are not available in our setting, we approximate the conditional density of the latent vectors by a parametric model whose parameters are estimated from the undersampled measurements using back-propagation. We use the framework for the joint alignment and recovery of multislice free breathing and ungated cardiac MRI data from highly undersampled measurements. Most of the current self-gating and manifold cardiac MRI approaches consider the independent recovery of images from each slice; these methods are not capable of exploiting the inter-slice redundancies in the datasets and require sophisticated post-processing or manual approaches to align the images from different slices. By contrast, the proposed scheme is able to align the multislice data and exploit the redundancies. Experimental results demonstrate the utility of the proposed scheme in dynamic imaging alignment and reconstructions.
Submission history
From: Qing Zou [view email][v1] Wed, 20 Jan 2021 15:58:48 UTC (1,318 KB)
[v2] Sat, 20 Mar 2021 14:44:27 UTC (2,194 KB)
[v3] Fri, 10 Dec 2021 17:15:18 UTC (3,764 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.