Electrical Engineering and Systems Science > Signal Processing
[Submitted on 26 Jan 2021]
Title:Self-Calibrating Indoor Localization with Crowdsourcing Fingerprints and Transfer Learning
View PDFAbstract:Precise indoor localization is one of the key requirements for fifth Generation (5G) and beyond, concerning various wireless communication systems, whose applications span different vertical sectors. Although many highly accurate methods based on signal fingerprints have been lately proposed for localization, their vast majority faces the problem of degrading performance when deployed in indoor systems, where the propagation environment changes rapidly. In order to address this issue, the crowdsourcing approach has been adopted, according to which the fingerprints are frequently updated in the respective database via user reporting. However, the late crowdsourcing techniques require precise indoor floor plans and fail to provide satisfactory accuracy. In this paper, we propose a low-complexity self-calibrating indoor crowdsourcing localization system that combines historical with frequently updated fingerprints for high precision user positioning. We present a multi-kernel transfer learning approach which exploits the inner relationship between the original and updated channel measurements. Our indoor laboratory experimental results with the proposed approach and using Nexus 5 smartphones at 2.4GHz with 20MHz bandwidth have shown the feasibility of about one meter level accuracy with a reasonable fingerprint update overhead.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.