Electrical Engineering and Systems Science > Signal Processing
[Submitted on 26 Jan 2021 (v1), last revised 1 Apr 2021 (this version, v2)]
Title:Semi-supervised source localization in reverberant environments with deep generative modeling
View PDFAbstract:We propose a semi-supervised approach to acoustic source localization in reverberant environments based on deep generative modeling. Localization in reverberant environments remains an open challenge. Even with large data volumes, the number of labels available for supervised learning in reverberant environments is usually small. We address this issue by performing semi-supervised learning (SSL) with convolutional variational autoencoders (VAEs) on reverberant speech signals recorded with microphone arrays. The VAE is trained to generate the phase of relative transfer functions (RTFs) between microphones, in parallel with a direction of arrival (DOA) classifier based on RTF-phase. These models are trained using both labeled and unlabeled RTF-phase sequences. In learning to perform these tasks, the VAE-SSL explicitly learns to separate the physical causes of the RTF-phase (i.e., source location) from distracting signal characteristics such as noise and speech activity. Relative to existing semi-supervised localization methods in acoustics, VAE-SSL is effectively an end-to-end processing approach which relies on minimal preprocessing of RTF-phase features. As far as we are aware, our paper presents the first approach to modeling the physics of acoustic propagation using deep generative modeling. The VAE-SSL approach is compared with two signal processing-based approaches, steered response power with phase transform (SRP-PHAT) and MUltiple SIgnal Classification (MUSIC), as well as fully supervised CNNs. We find that VAE-SSL can outperform the conventional approaches and the CNN in label-limited scenarios. Further, the trained VAE-SSL system can generate new RTF-phase samples, which shows the VAE-SSL approach learns the physics of the acoustic environment. The generative modeling in VAE-SSL thus provides a means of interpreting the learned representations.
Submission history
From: Michael Bianco [view email][v1] Tue, 26 Jan 2021 08:54:38 UTC (21,115 KB)
[v2] Thu, 1 Apr 2021 20:12:16 UTC (27,741 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.