Electrical Engineering and Systems Science > Signal Processing
[Submitted on 24 Jan 2021 (v1), last revised 8 Mar 2021 (this version, v3)]
Title:EEG-Inception: An Accurate and Robust End-to-End Neural Network for EEG-based Motor Imagery Classification
View PDFAbstract:Classification of EEG-based motor imagery (MI) is a crucial non-invasive application in brain-computer interface (BCI) research. This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based MI classification that outperforms the state-of-the-art methods. The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network, which showed to be highly efficient and accurate for time-series classification. Also, the proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing. Furthermore, this paper proposes a novel data augmentation method for EEG signals to enhance the accuracy, at least by 3%, and reduce overfitting with limited BCI datasets. The proposed model outperforms all the state-of-the-art methods by achieving the average accuracy of 88.4% and 88.6% on the 2008 BCI Competition IV 2a (four-classes) and 2b datasets (binary-classes), respectively. Furthermore, it takes less than 0.025 seconds to test a sample suitable for real-time processing. Moreover, the classification standard deviation for nine different subjects achieves the lowest value of 5.5 for the 2b dataset and 7.1 for the 2a dataset, which validates that the proposed method is highly robust. From the experiment results, it can be inferred that the EEG-Inception network exhibits a strong potential as a subject-independent classifier for EEG-based MI tasks.
Submission history
From: Ce Zhang Mr. [view email][v1] Sun, 24 Jan 2021 19:03:10 UTC (1,725 KB)
[v2] Mon, 1 Feb 2021 22:19:11 UTC (1,449 KB)
[v3] Mon, 8 Mar 2021 15:51:01 UTC (2,305 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.