Electrical Engineering and Systems Science > Systems and Control
[Submitted on 26 Jan 2021]
Title:Route Choice-based Socio-Technical Macroscopic Traffic Model
View PDFAbstract:Human route choice is undeniably one of the key contributing factors towards traffic dynamics. However, most existing macroscopic traffic models are typically concerned with driving behavior and do not incorporate human route choice behavior models in their formulation. In this paper, we propose a socio-technical macroscopic traffic model that characterizes the traffic states using human route choice attributes. Essentially, such model provides a framework for capturing the Cyber-Physical-Social coupling in smart transportation systems. To derive this model, we first use Cumulative Prospect Theory (CPT) to model the human passengers' route choice under bounded rationality. These choices are assumed to be influenced by traffic alerts and other incomplete traffic information. Next, we assume that the vehicles are operating under a non-cooperative cruise control scenario. Accordingly, human route choice segregates the traffic into multiple classes where each class corresponds to a specific route between an origin-destination pair. Thereafter, we derive a Mean Field Game (MFG) limit of this non-cooperative game to obtain a macroscopic model which embeds the human route choice attribute. Finally, we analyze the mathematical characteristics of the proposed model and present simulation studies to illustrate the model behavior.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.