Electrical Engineering and Systems Science > Signal Processing
[Submitted on 27 Jan 2021]
Title:Distributed Learning over Markovian Fading Channels for Stable Spectrum Access
View PDFAbstract:We consider the problem of multi-user spectrum access in wireless networks. The bandwidth is divided into K orthogonal channels, and M users aim to access the spectrum. Each user chooses a single channel for transmission at each time slot. The state of each channel is modeled by a restless unknown Markovian process. Previous studies have analyzed a special case of this setting, in which each channel yields the same expected rate for all users. By contrast, we consider a more general and practical model, where each channel yields a different expected rate for each user. This model adds a significant challenge of how to efficiently learn a channel allocation in a distributed manner to yield a global system-wide objective. We adopt the stable matching utility as the system objective, which is known to yield strong performance in multichannel wireless networks, and develop a novel Distributed Stable Strategy Learning (DSSL) algorithm to achieve the objective. We prove theoretically that DSSL converges to the stable matching allocation, and the regret, defined as the loss in total rate with respect to the stable matching solution, has a logarithmic order with time. Finally, simulation results demonstrate the strong performance of the DSSL algorithm.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.