Electrical Engineering and Systems Science > Signal Processing
[Submitted on 4 Feb 2021]
Title:Separable Joint Blind Deconvolution and Demixing
View PDFAbstract:Blind deconvolution and demixing is the problem of reconstructing convolved signals and kernels from the sum of their convolutions. This problem arises in many applications, such as blind MIMO. This work presents a separable approach to blind deconvolution and demixing via convex optimization. Unlike previous works, our formulation allows separation into smaller optimization problems, which significantly improves complexity. We develop recovery guarantees, which comply with those of the original non-separable problem, and demonstrate the method performance under several normalization constraints.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.