Nonlinear Sciences > Adaptation and Self-Organizing Systems
[Submitted on 4 Feb 2021]
Title:Complexity reduction in the 3D Kuramoto model
View PDFAbstract:The dynamics of large systems of coupled oscillators is a subject of increasing importance with prominent applications in several areas such as physics and biology. The Kuramoto model, where a set of oscillators move around a circle representing their phases, is a paradigm in this field, exhibiting a continuous transition between disordered and synchronous motion. Reinterpreting the oscillators as rotating unit vectors, the model was extended to allow vectors to move on the surface of D-dimensional spheres, with $D=2$ corresponding to the original model. It was shown that the transition to synchronous dynamics was discontinuous for odd D, raising a lot of interest. Inspired by results in 2D, Ott et al proposed an ansatz for density function describing the oscillators and derived equations for the ansatz parameters, effectively reducing the dimensionality of the system. Here we take a different approach for the 3D system and construct an ansatz based on spherical harmonics decomposition of the distribution function. Our result differs significantly from that proposed in Ott's work and leads to similar but simpler equations determining the dynamics of the order parameter. We derive the phase diagram of equilibrium solutions for several distributions of natural frequencies and find excellent agreement with simulations. We also compare the dynamics of the order parameter with numerical simulations and with the previously derived equations, finding good agreement in all cases. We believe our approach can be generalized to higher dimensions and help to achieve complexity reduction in other systems of equations.
Current browse context:
nlin.AO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.