Physics > Optics
[Submitted on 7 Mar 2021]
Title:Engineering the spectral bandwidth of quantum cascade laser frequency combs
View PDFAbstract:Quantum cascade lasers (QCLs) facilitate compact optical frequency comb sources that operate in the mid-infrared and terahertz spectral regions, where many molecules have their fundamental absorption lines. Enhancing the optical bandwidth of these chip-sized lasers is of paramount importance to address their application in broadband high-precision spectroscopy. In this work, we provide a numerical and experimental investigation of the comb spectral width and show how it can be optimized to obtain its maximum value defined by the laser gain bandwidth. The interplay of nonoptimal values of the resonant Kerr nonlinearity and the cavity dispersion can lead to significant narrowing of the comb spectrum and reveals the best approach for dispersion compensation. The implementation of high mirror losses is shown to be favourable and results in proliferation of the comb sidemodes. Ultimately, injection locking of QCLs by modulating the laser bias around the roundtrip frequency provides a stable external knob to control the FM comb state and recover the maximum spectral width of the unlocked laser state.
Current browse context:
physics.optics
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.