Computer Science > Machine Learning
[Submitted on 12 Mar 2021]
Title:A Distributed Optimisation Framework Combining Natural Gradient with Hessian-Free for Discriminative Sequence Training
View PDFAbstract:This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training that can operate efficiently in a distributed manner. It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods. A solution to a numerical issue in CG allows effective parameter updates to be generated with far fewer CG iterations than usually used (e.g. 5-8 instead of 200). This work also presents a novel preconditioning approach to improve the progress made by individual CG iterations for models with shared parameters. Although applicable to other training losses and model structures, NGHF is investigated in this paper for lattice-based discriminative sequence training for hybrid hidden Markov model acoustic models using a standard recurrent neural network, long short-term memory, and time delay neural network models for output probability calculation. Automatic speech recognition experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types. These experiments show that NGHF achieves larger word error rate reductions than standard stochastic gradient descent or Adam, while requiring orders of magnitude fewer parameter updates.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.