Computer Science > Information Theory
[Submitted on 15 Mar 2021]
Title:Performance Analysis of Dual-Hop Relaying for THz-RF Wireless Link with Asymmetrical Fading
View PDFAbstract:Terahertz (THz) frequency bands can be promising for data transmissions between the core network and access points (AP) for next-generation wireless systems. In this paper, we analyze the performance of a dual-hop THz-RF wireless system where an AP facilitates data transmission between a core network and user equipment (UE). We consider a generalized model for the end-to-end channel with an independent and not identically distributed (i.ni.d.) fading model for THz and RF links using the $\alpha$-$\mu$ distribution, the THz link with pointing errors, and asymmetrical relay position. We derive a closed-form expression of the cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) for the THz-RF link, which is valid for continuous values of $\mu$ for a generalized performance analysis over THz fading channels. Using the derived CDF, we analyze the performance of the THz-RF relayed system using decode-and-forward (DF) protocol by deriving analytical expressions of diversity order, moments of SNR, ergodic capacity, and average BER in terms of system parameters. We also analyze the considered system with an i.i.d. model and develop simplified performance to provide insight on the system behavior analytically under various practically relevant scenarios. Simulation and numerical analysis show a significant effect of fading parameters of the THz link and a nominal effect of normalized beam-width on the performance of the relay-assisted THz-RF system.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.