Nonlinear Sciences > Chaotic Dynamics
[Submitted on 14 Apr 2021]
Title:Effects of stickiness in the classical and quantum ergodic lemon billiard
View PDFAbstract:We study the classical and quantum ergodic lemon billiard introduced by Heller and Tomsovic in Phys. Today 46(7), 38 (1993), for the case $B=1/2$, which is a classically ergodic system (without a rigorous proof) exhibiting strong stickiness regions around a zero-measure bouncing ball modes. The structure of the classical stickiness regions is uncovered in the S-plots introduced by Lozej [Phys. Rev. E 101, 052204 (2020)]. A unique classical transport or diffusion time cannot be defined. As a consequence the quantum states are characterized by the following nonuniversal properties: (i) All eigenstates are chaotic but localized as exhibited in the Poincaré-Husimi (PH) functions. (ii) The entropy localization measure A (also the normalized inverse participation ratio) has a nonuniversal distribution, typically bimodal, thus deviating from the beta distribution, the latter one being characteristic of uniformly chaotic systems with no stickiness regions. (iii) The energy-level spacing distribution is Berry-Robnik-Brody (BRB), capturing two effects: the quantally divided phase space (because most of the PH functions are either the inner-ones or the outer-ones, dictated by the classical stickiness, with an effective parameter $\mu_1$ measuring the size of the inner region bordered by the sticky invariant object, namely, a cantorus), and the localization of PH functions characterized by the level repulsion (Brody) parameter $\beta$. (iv) In the energy range considered (between 20 000 states to 400 000 states above the ground state) the picture (the structure of the eigenstates and the statistics of the energy spectra) is not changing qualitatively, as $\beta$ fluctuates around 0.8, while $\mu_1$ decreases almost monotonically, with increasing energy.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.