Computer Science > Cryptography and Security
[Submitted on 22 Apr 2021 (v1), last revised 31 May 2021 (this version, v2)]
Title:Blockchain based Privacy-Preserved Federated Learning for Medical Images: A Case Study of COVID-19 CT Scans
View PDFAbstract:Medical health care centers are envisioned as a promising paradigm to handle the massive volume of data of COVID-19 patients using artificial intelligence (AI). Traditionally, AI techniques often require centralized data collection and training the model in a single organization, which is most common weakness due to the privacy and security of raw data communication. To solve this challenging task, we propose a blockchain-based federated learning framework that provides collaborative data training solutions by coordinating multiple hospitals to train and share encrypted federated models without leakage of data privacy. The blockchain ledger technology provides the decentralization of federated learning model without any central server. The proposed homomorphic encryption scheme encrypts and decrypts the gradients of model to preserve the privacy. More precisely, the proposed framework: i) train the local model by a novel capsule network to segmentation and classify COVID-19 images, ii) then use the homomorphic encryption scheme to secure the local model that encrypts and decrypts the gradients, and finally the model is shared over a decentralized platform through proposed blockchain-based federated learning algorithm. The integration of blockchain and federated learning leads to a new paradigm for medical image data sharing in the decentralized network. The conducted experimental resultsdemonstrate the performance of the proposed scheme.
Submission history
From: Jay Kumar [view email][v1] Thu, 22 Apr 2021 07:32:04 UTC (2,324 KB)
[v2] Mon, 31 May 2021 06:04:39 UTC (4,070 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.