Nonlinear Sciences > Chaotic Dynamics
[Submitted on 12 May 2021]
Title:The bifurcations of the critical points and the role of the depth in a symmetric Caldera potential energy surface
View PDFAbstract:In this work, we continue the study of the bifurcations of the critical points in a symmetric Caldera potential energy surface. In particular, we study the influence of the depth of the potential on the trajectory behavior before and after the bifurcations of the critical points. We observe two different types of trajectory behavior: dynamical matching and the non-existence of dynamical matching. Dynamical matching is a phenomenon that limits the way in which a trajectory can exit the Caldera based solely on how it enters the Caldera. Furthermore, we discuss two different types of symmetric Caldera potential energy surface and the transition from the one type to the other through the bifurcations of the critical points.
Submission history
From: Makrina Agaoglou [view email][v1] Wed, 12 May 2021 13:28:30 UTC (3,355 KB)
Current browse context:
nlin.CD
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.