Computer Science > Sound
[Submitted on 17 May 2021 (v1), last revised 29 Jul 2021 (this version, v2)]
Title:Sound Event Detection with Adaptive Frequency Selection
View PDFAbstract:In this work, we present HIDACT, a novel network architecture for adaptive computation for efficiently recognizing acoustic events. We evaluate the model on a sound event detection task where we train it to adaptively process frequency bands. The model learns to adapt to the input without requesting all frequency sub-bands provided. It can make confident predictions within fewer processing steps, hence reducing the amount of computation. Experimental results show that HIDACT has comparable performance to baseline models with more parameters and higher computational complexity. Furthermore, the model can adjust the amount of computation based on the data and computational budget.
Submission history
From: Zhepei Wang [view email][v1] Mon, 17 May 2021 03:57:33 UTC (1,560 KB)
[v2] Thu, 29 Jul 2021 05:02:59 UTC (1,559 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.