Computer Science > Machine Learning
[Submitted on 17 May 2021]
Title:An Integrated Deep Learning and Dynamic Programming Method for Predicting Tumor Suppressor Genes, Oncogenes, and Fusion from PDB Structures
View PDFAbstract:Mutations in proto-oncogenes (ONGO) and the loss of regulatory function of tumor suppression genes (TSG) are the common underlying mechanism for uncontrolled tumor growth. While cancer is a heterogeneous complex of distinct diseases, finding the potentiality of the genes related functionality to ONGO or TSG through computational studies can help develop drugs that target the disease. This paper proposes a classification method that starts with a preprocessing stage to extract the feature map sets from the input 3D protein structural information. The next stage is a deep convolutional neural network stage (DCNN) that outputs the probability of functional classification of genes. We explored and tested two approaches: in Approach 1, all filtered and cleaned 3D-protein-structures (PDB) are pooled together, whereas in Approach 2, the primary structures and their corresponding PDBs are separated according to the genes' primary structural information. Following the DCNN stage, a dynamic programming-based method is used to determine the final prediction of the primary structures' functionality. We validated our proposed method using the COSMIC online database. For the ONGO vs TSG classification problem, the AUROC of the DCNN stage for Approach 1 and Approach 2 DCNN are 0.978 and 0.765, respectively. The AUROCs of the final genes' primary structure functionality classification for Approach 1 and Approach 2 are 0.989, and 0.879, respectively. For comparison, the current state-of-the-art reported AUROC is 0.924.
Submission history
From: Nishanth Anandanadarajah [view email][v1] Mon, 17 May 2021 18:18:57 UTC (2,783 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.