Computer Science > Sound
[Submitted on 18 May 2021]
Title:Federated Learning With Highly Imbalanced Audio Data
View PDFAbstract:Federated learning (FL) is a privacy-preserving machine learning method that has been proposed to allow training of models using data from many different clients, without these clients having to transfer all their data to a central server. There has as yet been relatively little consideration of FL or other privacy-preserving methods in audio. In this paper, we investigate using FL for a sound event detection task using audio from the FSD50K dataset. Audio is split into clients based on uploader metadata. This results in highly imbalanced subsets of data between clients, noted as a key issue in FL scenarios. A series of models is trained using `high-volume' clients that contribute 100 audio clips or more, testing the effects of varying FL parameters, followed by an additional model trained using all clients with no minimum audio contribution. It is shown that FL models trained using the high-volume clients can perform similarly to a centrally-trained model, though there is much more noise in results than would typically be expected for a centrally-trained model. The FL model trained using all clients has a considerably reduced performance compared to the centrally-trained model.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.