Computer Science > Networking and Internet Architecture
[Submitted on 18 May 2021]
Title:A pragmatic approach for designing transparent WDM optical networks with multi-objectives
View PDFAbstract:In facing with the explosive Internet traffic growth, optical transport networks based on WDM technologies forming the core part of Internet infrastructure carrying multi-Tb/s has to be re-considered from both designing, planning, operation and management perspectives to attain greater efficiency. Thanks to the convergence of significant advances in optical transmission technologies, and photonic switching, transparent (all-optical) architecture has come into practice, paving the way for eliminating the over-utilization of costly optical-electrical-optical (O-E-O) interfaces and hence, yielding remarkable savings of cost and energy consumption compared to opaque architecture. Traditional designs for transparent optical networks based on single-objective optimization model aiming at optimizing solely a single performance metric appears to be insufficient to capture the nuances of practical designs while conventional multi-objective approach tends to reach (non-) optimal solutions. Different from existing works, we present a new framework for multi-objective WDM network designs capturing several goals on one hand and on the other hand, achieving optimal solutions. Moreover, our proposal exploits the characteristics of each constituent objectives to lay the foundation for setting up weight coefficient so that the order of optimization is guaranteed. Equally important, our proposal is pragmatic in the sense that the complexity of the optimization model remains the same as the single-objective model while the quality of solution has been greatly improved. We have extensively tested realistic optical core networks topologies, that is, COST239 and NSFNET, with various network traffic conditions and it turns out that our design brings about a saving of wavelength link usage up to roughly $28\%$ in the most favorable cases while $14\%$ is expected for the least favorable cases.
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.