Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 May 2021]
Title:Deep Learning Radio Frequency Signal Classification with Hybrid Images
View PDFAbstract:In recent years, Deep Learning (DL) has been successfully applied to detect and classify Radio Frequency (RF) Signals. A DL approach is especially useful since it identifies the presence of a signal without needing full protocol information, and can also detect and/or classify non-communication waveforms, such as radar signals. In this work, we focus on the different pre-processing steps that can be used on the input training data, and test the results on a fixed DL architecture. While previous works have mostly focused exclusively on either time-domain or frequency domain approaches, we propose a hybrid image that takes advantage of both time and frequency domain information, and tackles the classification as a Computer Vision problem. Our initial results point out limitations to classical pre-processing approaches while also showing that it's possible to build a classifier that can leverage the strengths of multiple signal representations.
Submission history
From: Hilal Elyousseph [view email][v1] Wed, 19 May 2021 11:12:09 UTC (1,970 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.