Computer Science > Sound
[Submitted on 25 May 2021]
Title:RNNoise-Ex: Hybrid Speech Enhancement System based on RNN and Spectral Features
View PDFAbstract:Recent interest in exploiting Deep Learning techniques for Noise Suppression, has led to the creation of Hybrid Denoising Systems that combine classic Signal Processing with Deep Learning. In this paper, we concentrated our efforts on extending the RNNoise denoising system (arXiv:1709.08243) with the inclusion of complementary features during the training phase. We present a comprehensive explanation of the set-up process of a modified system and present the comparative results derived from a performance evaluation analysis, using a reference version of RNNoise as control.
Submission history
From: Constantine Doumanidis [view email][v1] Tue, 25 May 2021 10:32:08 UTC (410 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.