Computer Science > Sound
[Submitted on 26 May 2021 (v1), last revised 18 Mar 2022 (this version, v3)]
Title:Self-attending RNN for Speech Enhancement to Improve Cross-corpus Generalization
View PDFAbstract:Deep neural networks (DNNs) represent the mainstream methodology for supervised speech enhancement, primarily due to their capability to model complex functions using hierarchical representations. However, a recent study revealed that DNNs trained on a single corpus fail to generalize to untrained corpora, especially in low signal-to-noise ratio (SNR) conditions. Developing a noise, speaker, and corpus independent speech enhancement algorithm is essential for real-world applications. In this study, we propose a self-attending recurrent neural network, or attentive recurrent network (ARN), for time-domain speech enhancement to improve cross-corpus generalization. ARN comprises of recurrent neural networks (RNNs) augmented with self-attention blocks and feedforward blocks. We evaluate ARN on different corpora with nonstationary noises in low SNR conditions. Experimental results demonstrate that ARN substantially outperforms competitive approaches to time-domain speech enhancement, such as RNNs and dual-path ARNs. Additionally, we report an important finding that the two popular approaches to speech enhancement: complex spectral mapping and time-domain enhancement, obtain similar results for RNN and ARN with large-scale training. We also provide a challenging subset of the test set used in this study for evaluating future algorithms and facilitating direct comparisons.
Submission history
From: Ashutosh Pandey [view email][v1] Wed, 26 May 2021 20:48:02 UTC (6,683 KB)
[v2] Tue, 23 Nov 2021 10:12:21 UTC (8,098 KB)
[v3] Fri, 18 Mar 2022 01:19:05 UTC (2,632 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.