Mathematics > Numerical Analysis
[Submitted on 26 May 2021 (v1), last revised 3 Jun 2021 (this version, v2)]
Title:Sparse recovery based on the generalized error function
View PDFAbstract:In this paper, we propose a novel sparse recovery method based on the generalized error function. The penalty function introduced involves both the shape and the scale parameters, making it very flexible. The theoretical analysis results in terms of the null space property, the spherical section property and the restricted invertibility factor are established for both constrained and unconstrained models. The practical algorithms via both the iteratively reweighted $\ell_1$ and the difference of convex functions algorithms are presented. Numerical experiments are conducted to illustrate the improvement provided by the proposed approach in various scenarios. Its practical application in magnetic resonance imaging (MRI) reconstruction is studied as well.
Submission history
From: Zhiyong Zhou [view email][v1] Wed, 26 May 2021 11:36:01 UTC (1,924 KB)
[v2] Thu, 3 Jun 2021 01:57:48 UTC (1,924 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.