Computer Science > Machine Learning
[Submitted on 27 May 2021 (v1), last revised 11 Apr 2023 (this version, v2)]
Title:An Offline Risk-aware Policy Selection Method for Bayesian Markov Decision Processes
View PDFAbstract:In Offline Model Learning for Planning and in Offline Reinforcement Learning, the limited data set hinders the estimate of the Value function of the relative Markov Decision Process (MDP). Consequently, the performance of the obtained policy in the real world is bounded and possibly risky, especially when the deployment of a wrong policy can lead to catastrophic consequences. For this reason, several pathways are being followed with the scope of reducing the model error (or the distributional shift between the learned model and the true one) and, more broadly, obtaining risk-aware solutions with respect to model uncertainty. But when it comes to the final application which baseline should a practitioner choose? In an offline context where computational time is not an issue and robustness is the priority we propose Exploitation vs Caution (EvC), a paradigm that (1) elegantly incorporates model uncertainty abiding by the Bayesian formalism, and (2) selects the policy that maximizes a risk-aware objective over the Bayesian posterior between a fixed set of candidate policies provided, for instance, by the current baselines. We validate EvC with state-of-the-art approaches in different discrete, yet simple, environments offering a fair variety of MDP classes. In the tested scenarios EvC manages to select robust policies and hence stands out as a useful tool for practitioners that aim to apply offline planning and reinforcement learning solvers in the real world.
Submission history
From: Giorgio Angelotti [view email][v1] Thu, 27 May 2021 20:12:20 UTC (4,051 KB)
[v2] Tue, 11 Apr 2023 13:01:07 UTC (155 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.