Computer Science > Sound
[Submitted on 28 May 2021]
Title:DIVE: End-to-end Speech Diarization via Iterative Speaker Embedding
View PDFAbstract:We introduce DIVE, an end-to-end speaker diarization algorithm. Our neural algorithm presents the diarization task as an iterative process: it repeatedly builds a representation for each speaker before predicting the voice activity of each speaker conditioned on the extracted representations. This strategy intrinsically resolves the speaker ordering ambiguity without requiring the classical permutation invariant training loss. In contrast with prior work, our model does not rely on pretrained speaker representations and optimizes all parameters of the system with a multi-speaker voice activity loss. Importantly, our loss explicitly excludes unreliable speaker turn boundaries from training, which is adapted to the standard collar-based Diarization Error Rate (DER) evaluation. Overall, these contributions yield a system redefining the state-of-the-art on the standard CALLHOME benchmark, with 6.7% DER compared to 7.8% for the best alternative.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.