Computer Science > Machine Learning
[Submitted on 28 May 2021]
Title:Asymptotically Optimal Bandits under Weighted Information
View PDFAbstract:We study the problem of regret minimization in a multi-armed bandit setup where the agent is allowed to play multiple arms at each round by spreading the resources usually allocated to only one arm. At each iteration the agent selects a normalized power profile and receives a Gaussian vector as outcome, where the unknown variance of each sample is inversely proportional to the power allocated to that arm. The reward corresponds to a linear combination of the power profile and the outcomes, resembling a linear bandit. By spreading the power, the agent can choose to collect information much faster than in a traditional multi-armed bandit at the price of reducing the accuracy of the samples. This setup is fundamentally different from that of a linear bandit -- the regret is known to scale as $\Theta(\sqrt{T})$ for linear bandits, while in this setup the agent receives a much more detailed feedback, for which we derive a tight $\log(T)$ problem-dependent lower-bound. We propose a Thompson-Sampling-based strategy, called Weighted Thompson Sampling (\WTS), that designs the power profile as its posterior belief of each arm being the best arm, and show that its upper bound matches the derived logarithmic lower bound. Finally, we apply this strategy to a problem of control and system identification, where the goal is to estimate the maximum gain (also called $\mathcal{H}_\infty$-norm) of a linear dynamical system based on batches of input-output samples.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.