Computer Science > Machine Learning
[Submitted on 30 May 2021 (v1), last revised 13 Jan 2022 (this version, v2)]
Title:An improved LogNNet classifier for IoT application
View PDFAbstract:In the age of neural networks and Internet of Things (IoT), the search for new neural network architectures capable of operating on devices with limited computing power and small memory size is becoming an urgent agenda. Designing suitable algorithms for IoT applications is an important task. The paper proposes a feed forward LogNNet neural network, which uses a semi-linear Henon type discrete chaotic map to classify MNIST-10 dataset. The model is composed of reservoir part and trainable classifier. The aim of the reservoir part is transforming the inputs to maximize the classification accuracy using a special matrix filing method and a time series generated by the chaotic map. The parameters of the chaotic map are optimized using particle swarm optimization with random immigrants. As a result, the proposed LogNNet/Henon classifier has higher accuracy and the same RAM usage, compared to the original version of LogNNet, and offers promising opportunities for implementation in IoT devices. In addition, a direct relation between the value of entropy and accuracy of the classification is demonstrated.
Submission history
From: Andrei Velichko [view email][v1] Sun, 30 May 2021 02:12:45 UTC (694 KB)
[v2] Thu, 13 Jan 2022 01:04:57 UTC (1,066 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.