High Energy Physics - Theory
[Submitted on 9 Jun 2021 (v1), last revised 25 Sep 2021 (this version, v2)]
Title:The Multiverse in an Inverted Island
View PDFAbstract:We study the redundancies in the global spacetime description of the eternally inflating multiverse using the quantum extremal surface prescription. We argue that a sufficiently large spatial region in a bubble universe has an entanglement island surrounding it. Consequently, the semiclassical physics of the multiverse, which is all we need to make cosmological predictions, can be fully described by the fundamental degrees of freedom associated with certain finite spatial regions. The island arises due to mandatory collisions with collapsing bubbles, whose big crunch singularities indicate redundancies of the global spacetime description. The emergence of the island and the resulting reduction of independent degrees of freedom provides a regularization of infinities which caused the cosmological measure problem.
Submission history
From: Yasunori Nomura [view email][v1] Wed, 9 Jun 2021 18:00:00 UTC (939 KB)
[v2] Sat, 25 Sep 2021 02:37:16 UTC (939 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.