Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Jun 2021]
Title:Face mask detection using convolution neural network
View PDFAbstract:In the recent times, the Coronaviruses that are a big family of different viruses have become very common, contagious and dangerous to the whole human kind. It spreads human to human by exhaling the infection breath, which leaves droplets of the virus on different surface which is then inhaled by other person and catches the infection too. So it has become very important to protect ourselves and the people around us from this situation. We can take precautions such as social distancing, washing hands every two hours, using sanitizer, maintaining social distance and the most important wearing a mask. Public use of wearing a masks has become very common everywhere in the whole world now. From that the most affected and devastating condition is of India due to its extreme population in small area. This paper proposes a method to detect the face mask is put on or not for offices, or any other work place with a lot of people coming to work. We have used convolutional neural network for the same. The model is trained on a real world dataset and tested with live video streaming with a good accuracy. Further the accuracy of the model with different hyper parameters and multiple people at different distance and location of the frame is done.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.