Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jun 2021 (v1), last revised 11 Oct 2021 (this version, v4)]
Title:Neural Network Modeling of Probabilities for Coding the Octree Representation of Point Clouds
View PDFAbstract:This paper describes a novel lossless point cloud compression algorithm that uses a neural network for estimating the coding probabilities for the occupancy status of voxels, depending on wide three dimensional contexts around the voxel to be encoded. The point cloud is represented as an octree, with each resolution layer being sequentially encoded and decoded using arithmetic coding, starting from the lowest resolution, until the final resolution is reached. The occupancy probability of each voxel of the splitting pattern at each node of the octree is modeled by a neural network, having at its input the already encoded occupancy status of several octree nodes (belonging to the past and current resolutions), corresponding to a 3D context surrounding the node to be encoded. The algorithm has a fast and a slow version, the fast version selecting differently several voxels of the context, which allows an increased parallelization by sending larger batches of templates to be estimated by the neural network, at both encoder and decoder. The proposed algorithms yield state-of-the-art results on benchmark datasets. The implementation will be made available at this https URL
Submission history
From: Emre Can Kaya [view email][v1] Fri, 11 Jun 2021 16:07:46 UTC (1,237 KB)
[v2] Mon, 14 Jun 2021 13:28:20 UTC (3,828 KB)
[v3] Fri, 18 Jun 2021 21:41:33 UTC (3,828 KB)
[v4] Mon, 11 Oct 2021 13:58:16 UTC (4,106 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.