Electrical Engineering and Systems Science > Signal Processing
[Submitted on 21 Jun 2021]
Title:Tensor Learning-based Precoder Codebooks for FD-MIMO Systems
View PDFAbstract:This paper develops an efficient procedure for designing low-complexity codebooks for precoding in a full-dimension (FD) multiple-input multiple-output (MIMO) system with a uniform planar array (UPA) antenna at the transmitter (Tx) using tensor learning. In particular, instead of using statistical channel models, we utilize a model-free data-driven approach with foundations in machine learning to generate codebooks that adapt to the surrounding propagation conditions. We use a tensor representation of the FD-MIMO channel and exploit its properties to design quantized version of the channel precoders. We find the best representation of the optimal precoder as a function of Kronecker Product (KP) of two low-dimensional precoders, respectively corresponding to the horizontal and vertical dimensions of the UPA, obtained from the tensor decomposition of the channel. We then quantize this precoder to design product codebooks such that an average loss in mutual information due to quantization of channel state information (CSI) is minimized. The key technical contribution lies in exploiting the constraints on the precoders to reduce the product codebook design problem to an unsupervised clustering problem on a Cartesian Product Grassmann manifold (CPM), where the cluster centroids form a finite-sized precoder codebook. This codebook can be found efficiently by running a $K$-means clustering on the CPM. With a suitable induced distance metric on the CPM, we show that the construction of product codebooks is equivalent to finding the optimal set of centroids on the factor manifolds corresponding to the horizontal and vertical dimensions. Simulation results are presented to demonstrate the capability of the proposed design criterion in learning the codebooks and the attractive performance of the designed codebooks.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.