Condensed Matter > Statistical Mechanics
[Submitted on 28 Jul 2021]
Title:Inverse scattering solution of the weak noise theory of the Kardar-Parisi-Zhang equation with flat and Brownian initial conditions
View PDFAbstract:We present the solution of the weak noise theory (WNT) for the Kardar-Parisi-Zhang equation in one dimension at short time for flat initial condition (IC). The non-linear hydrodynamic equations of the WNT are solved analytically through a connexion to the Zakharov-Shabat (ZS) system using its classical integrability. This approach is based on a recently developed Fredholm determinant framework previously applied to the droplet IC. The flat IC provides the case for a non-vanishing boundary condition of the ZS system and yields a richer solitonic structure comprising the appearance of multiple branches of the Lambert function. As a byproduct, we obtain the explicit solution of the WNT for the Brownian IC, which undergoes a dynamical phase transition. We elucidate its mechanism by showing that the related spontaneous breaking of the spatial symmetry arises from the interplay between two solitons with different rapidities.
Submission history
From: Alexandre Krajenbrink [view email][v1] Wed, 28 Jul 2021 17:08:15 UTC (900 KB)
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.