Physics > Space Physics
[Submitted on 28 Jul 2021]
Title:On a transitional regime of electron resonant interaction with whistler-mode waves in inhomogeneous space plasma
View PDFAbstract:Resonances with electromagnetic whistler-mode waves are the primary driver for the formation and dynamics of energetic electron fluxes in various space plasma systems, including shock waves and planetary radiation belts. The basic and most elaborated theoretical framework for the description of the integral effect of multiple resonant interactions is the quasi-linear theory, that operates through electron diffusion in velocity space. The quasi-linear diffusion rate scales linearly with the wave intensity, D(QL) is proportional to Bw2, which should be small enough to satisfy the applicability criteria of this theory. Spacecraft measurements, however, often detect whistle-mode waves sufficiently intense to resonate with electrons nonlinearly. Such nonlinear resonant interactions imply effects of phase trapping and phase bunching, which may quickly change the electron fluxes in a non-diffusive manner. Both regimes of electron resonant interactions (diffusive and nonlinear) are well studied, but there is no theory quantifying the transition between these two regimes. In this paper we describe the integral effect of nonlinear electron interactions with whistler-mode waves in terms of the time-scale of electron distribution relaxation, is about inverse D(NL). We determine the scaling of D(NL) with wave intensity Bw2 and other main wave characteristics, such as wave-packet size. The comparison of D(QL) and D(NL) provides the range of wave intensity and wave-packet sizes where the electron distribution evolves at the same rates for the diffusive and nonlinear resonant regimes. The obtained results are discussed in the context of energetic electron dynamics in the Earth's radiation belt.
Current browse context:
physics.space-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.