High Energy Physics - Theory
[Submitted on 30 Jul 2021]
Title:Distinguishing Random and Black Hole Microstates
View PDFAbstract:This is an expanded version of the short report [Phys. Rev. Lett. 126, 171603 (2021)], where the relative entropy was used to distinguish random states drawn from the Wishart ensemble as well as black hole microstates. In this work, we expand these ideas by computing many generalizations including the Petz Rényi relative entropy, sandwiched Rényi relative entropy, fidelities, and trace distances. These generalized quantities are able to teach us about new structures in the space of random states and black hole microstates where the von Neumann and relative entropies were insufficient. We further generalize to generic random tensor networks where new phenomena arise due to the locality in the networks. These phenomena sharpen the relationship between holographic states and random tensor networks. We discuss the implications of our results on the black hole information problem using replica wormholes, specifically the state dependence (hair) in Hawking radiation. Understanding the differences between Hawking radiation of distinct evaporating black holes is an important piece of the information problem that was not addressed by entropy calculations using the island formula. We interpret our results in the language of quantum hypothesis testing and the subsystem eigenstate thermalization hypothesis (ETH), deriving that chaotic (including holographic) systems obey subsystem ETH for all subsystems less than half the total system size.
Submission history
From: Jonah Kudler-Flam [view email][v1] Fri, 30 Jul 2021 18:00:00 UTC (1,977 KB)
Current browse context:
hep-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.