Computer Science > Machine Learning
[Submitted on 31 Jul 2021 (v1), last revised 30 Jul 2022 (this version, v4)]
Title:Learning to Control DC Motor for Micromobility in Real Time with Reinforcement Learning
View PDFAbstract:Autonomous micromobility has been attracting the attention of researchers and practitioners in recent years. A key component of many micro-transport vehicles is the DC motor, a complex dynamical system that is continuous and non-linear. Learning to quickly control the DC motor in the presence of disturbances and uncertainties is desired for various applications that require robustness and stability. Techniques to accomplish this task usually rely on a mathematical system model, which is often insufficient to anticipate the effects of time-varying and interrelated sources of non-linearities. While some model-free approaches have been successful at the task, they rely on massive interactions with the system and are trained in specialized hardware in order to fit a highly parameterized controller. In this work, we learn to steer a DC motor via sample-efficient reinforcement learning. Using data collected from hardware interactions in the real world, we additionally build a simulator to experiment with a wide range of parameters and learning strategies. With the best parameters found, we learn an effective control policy in one minute and 53 seconds on a simulation and in 10 minutes and 35 seconds on a physical system.
Submission history
From: Bibek Poudel [view email][v1] Sat, 31 Jul 2021 03:24:36 UTC (3,985 KB)
[v2] Sat, 29 Jan 2022 14:10:56 UTC (8,448 KB)
[v3] Sat, 19 Mar 2022 15:08:54 UTC (6,712 KB)
[v4] Sat, 30 Jul 2022 23:14:20 UTC (4,815 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.