Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 31 Jul 2021 (v1), last revised 8 Sep 2021 (this version, v2)]
Title:QCD phase transition drives supernova explosion of a very massive star
View PDFAbstract:The nature of core-collapse supernova (SN) explosions is yet incompletely understood. The present article revisits the scenario in which the release of latent heat due to a first-order phase transition, from normal nuclear matter to the quark-gluon plasma, liberates the necessary energy to explain observed SN explosions. Here, the role of the metallicity of the stellar progenitor is investigated, comparing a solar metallicity and a low-metallicity case, both having a zero-age main sequence (ZAMS) mass of 75 $M_\odot$. It is found that low-metallicity models belong exclusively to the failed SN branch, featuring the formation of black holes without explosions. It excludes this class of massive star explosions as possible site for the nucleosynthesis of heavy elements at extremely low metallicity, usually associated with the early universe.
Submission history
From: Tobias Fischer [view email][v1] Sat, 31 Jul 2021 09:44:23 UTC (726 KB)
[v2] Wed, 8 Sep 2021 17:15:43 UTC (662 KB)
Current browse context:
astro-ph.HE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.