Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Jul 2021]
Title:Word2Pix: Word to Pixel Cross Attention Transformer in Visual Grounding
View PDFAbstract:Current one-stage methods for visual grounding encode the language query as one holistic sentence embedding before fusion with visual feature. Such a formulation does not treat each word of a query sentence on par when modeling language to visual attention, therefore prone to neglect words which are less important for sentence embedding but critical for visual grounding. In this paper we propose Word2Pix: a one-stage visual grounding network based on encoder-decoder transformer architecture that enables learning for textual to visual feature correspondence via word to pixel attention. The embedding of each word from the query sentence is treated alike by attending to visual pixels individually instead of single holistic sentence embedding. In this way, each word is given equivalent opportunity to adjust the language to vision attention towards the referent target through multiple stacks of transformer decoder layers. We conduct the experiments on RefCOCO, RefCOCO+ and RefCOCOg datasets and the proposed Word2Pix outperforms existing one-stage methods by a notable margin. The results obtained also show that Word2Pix surpasses two-stage visual grounding models, while at the same time keeping the merits of one-stage paradigm namely end-to-end training and real-time inference speed intact.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.