Mathematics > Optimization and Control
[Submitted on 31 Jul 2021 (v1), last revised 7 Apr 2022 (this version, v2)]
Title:Minimization over the l1-ball using an active-set non-monotone projected gradient
View PDFAbstract:The l1-ball is a nicely structured feasible set that is widely used in many fields (e.g., machine learning, statistics and signal analysis) to enforce some sparsity in the model solutions. In this paper, we devise an active-set strategy for efficiently dealing with minimization problems over the l1-ball and embed it into a tailored algorithmic scheme that makes use of a non-monotone first-order approach to explore the given subspace at each iteration. We prove global convergence to stationary points. Finally, we report numerical experiments, on two different classes of instances, showing the effectiveness of the algorithm.
Submission history
From: Marianna De Santis [view email][v1] Sat, 31 Jul 2021 13:31:35 UTC (234 KB)
[v2] Thu, 7 Apr 2022 11:46:35 UTC (235 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.