Computer Science > Cryptography and Security
[Submitted on 1 Aug 2021]
Title:BadEncoder: Backdoor Attacks to Pre-trained Encoders in Self-Supervised Learning
View PDFAbstract:Self-supervised learning in computer vision aims to pre-train an image encoder using a large amount of unlabeled images or (image, text) pairs. The pre-trained image encoder can then be used as a feature extractor to build downstream classifiers for many downstream tasks with a small amount of or no labeled training data. In this work, we propose BadEncoder, the first backdoor attack to self-supervised learning. In particular, our BadEncoder injects backdoors into a pre-trained image encoder such that the downstream classifiers built based on the backdoored image encoder for different downstream tasks simultaneously inherit the backdoor behavior. We formulate our BadEncoder as an optimization problem and we propose a gradient descent based method to solve it, which produces a backdoored image encoder from a clean one. Our extensive empirical evaluation results on multiple datasets show that our BadEncoder achieves high attack success rates while preserving the accuracy of the downstream classifiers. We also show the effectiveness of BadEncoder using two publicly available, real-world image encoders, i.e., Google's image encoder pre-trained on ImageNet and OpenAI's Contrastive Language-Image Pre-training (CLIP) image encoder pre-trained on 400 million (image, text) pairs collected from the Internet. Moreover, we consider defenses including Neural Cleanse and MNTD (empirical defenses) as well as PatchGuard (a provable defense). Our results show that these defenses are insufficient to defend against BadEncoder, highlighting the needs for new defenses against our BadEncoder. Our code is publicly available at: this https URL.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.