Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Aug 2021 (v1), last revised 24 Mar 2022 (this version, v3)]
Title:Applications of Artificial Neural Networks in Microorganism Image Analysis: A Comprehensive Review from Conventional Multilayer Perceptron to Popular Convolutional Neural Network and Potential Visual Transformer
View PDFAbstract:Microorganisms are widely distributed in the human daily living environment. They play an essential role in environmental pollution control, disease prevention and treatment, and food and drug production. The analysis of microorganisms is essential for making full use of different microorganisms. The conventional analysis methods are laborious and time-consuming. Therefore, the automatic image analysis based on artificial neural networks is introduced to optimize it. However, the automatic microorganism image analysis faces many challenges, such as the requirement of a robust algorithm caused by various application occasions, insignificant features and easy under-segmentation caused by the image characteristic, and various analysis tasks. Therefore, we conduct this review to comprehensively discuss the characteristics of microorganism image analysis based on artificial neural networks. In this review, the background and motivation are introduced first. Then, the development of artificial neural networks and representative networks are presented. After that, the papers related to microorganism image analysis based on classical and deep neural networks are reviewed from the perspectives of different tasks. In the end, the methodology analysis and potential direction are discussed.
Submission history
From: Jinghua Zhang [view email][v1] Sun, 1 Aug 2021 03:46:48 UTC (18,845 KB)
[v2] Tue, 25 Jan 2022 06:53:03 UTC (12,568 KB)
[v3] Thu, 24 Mar 2022 11:44:50 UTC (6,284 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.