Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Aug 2021]
Title:Developing a Compressed Object Detection Model based on YOLOv4 for Deployment on Embedded GPU Platform of Autonomous System
View PDFAbstract:Latest CNN-based object detection models are quite accurate but require a high-performance GPU to run in real-time. They still are heavy in terms of memory size and speed for an embedded system with limited memory space. Since the object detection for autonomous system is run on an embedded processor, it is preferable to compress the detection network as light as possible while preserving the detection accuracy. There are several popular lightweight detection models but their accuracy is too low for safe driving applications. Therefore, this paper proposes a new object detection model, referred as YOffleNet, which is compressed at a high ratio while minimizing the accuracy loss for real-time and safe driving application on an autonomous system. The backbone network architecture is based on YOLOv4, but we could compress the network greatly by replacing the high-calculation-load CSP DenseNet with the lighter modules of ShuffleNet. Experiments with KITTI dataset showed that the proposed YOffleNet is compressed by 4.7 times than the YOLOv4-s that could achieve as fast as 46 FPS on an embedded GPU system(NVIDIA Jetson AGX Xavier). Compared to the high compression ratio, the accuracy is reduced slightly to 85.8% mAP, that is only 2.6% lower than YOLOv4-s. Thus, the proposed network showed a high potential to be deployed on the embedded system of the autonomous system for the real-time and accurate object detection applications.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.